Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications
نویسندگان
چکیده
Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.
منابع مشابه
The Synthesized Reduced Graphene Oxide Enhanced the Capacitive Behavior of Activated Carbon/PVA as Potential Electrode Materials
In this work, activated carbon (AC) derived from biomass wastes was implemented as electrode materials in supercapacitor application. This study has adopted rubber seed shell (RSS) wastes to derive AC via pyrolysis process. Meanwhile, reduced graphene oxide (rGO) was used as an additive material in order to study the effect of the rGO in capacitive behavior. The synthesized rGO was successfully...
متن کاملStable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer
In this paper, capacitive-type humidity sensors were prepared by sequentially drop-coating the aqueous suspensions of zinc oxide (ZnO) nanopowders and polyvinyl pyrrolidone-reduced graphene oxide (PVP-RGO) nanocomposites onto interdigitated electrodes. Significant improvements in both sensitivity and linearity were achieved for the ZnO/PVP-RGO sensors compared with the PVP-RGO/ZnO, PVP-RGO, and...
متن کاملTilted Fiber Bragg Grating Sensor with Graphene Oxide Coating for Humidity Sensing
In this study, we propose a tilted fiber Bragg grating (TFBG) humidity sensor fabricated using the phase mask method to produce a TFBG that was then etched with five different diameters of 20, 35, 50, 55 and 60 μm, after which piezoelectric inkjet technology was used to coat the grating with graphene oxide. According to the experimental results, the diameter of 20 μm yielded the best sensitivit...
متن کاملFabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor
In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (...
متن کاملOptical Fiber Humidity Sensor Based on Lossy Mode Resonances
A novel optical fiber humidity sensor based on lossy mode resonances (LMR) has been developed. LMRs are supported here by a thin Indium Tin Oxide (ITO) coating fabricated onto an optical fiber core via a sol-gel dip coating. ITO coated optical fiber devices present a resonant maximum absorption peak in the infra-red region which is shifted to higher wavelengths when the refractive index of the ...
متن کامل